MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/06
Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0607	06

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0607	06

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& \begin{tabular}{l}
\(\div 2\), square \\
OR \\
square, \(\div 4\) \\
Testing both shown
\end{tabular} \& 2

1 \& B1 square oe \& | correct order required |
| :--- |
| Accept $\left(\frac{n-1}{2}\right)^{2}$ or $\frac{(n-1)^{2}}{4}$ only if written here in correct form For B1 accept n^{2} on its own OR these are square numbers |
| Correct operations only. Accept bad form. |
| Communication: any example written out correctly: $7-1=6 ; \frac{6}{2}=3 ; 3^{2}=9$ |
| OR $\quad \frac{7-1}{2}=3 ; \quad 3^{2}=9$ |
| OR $\left(\frac{7-1}{2}\right)^{2}=\left(\frac{6}{2}\right)^{2}=9$ |
| OR $\left(\frac{7-1}{2}\right)^{2}=3^{2}=9$ |
| OR $\frac{(7-1)^{2}}{4}=\frac{6^{2}}{4}=9$ |
| OR $\quad \frac{(7-1)^{2}}{4}=\frac{36}{4}=9$ |

\hline
\end{tabular}

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0607	06

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0607	06

1 (a) (i) (ii) (b) (c)	$\begin{aligned} & 3^{2}+2^{2} \text { seen } \\ & \frac{3}{\sqrt{13}} \text { oe } \\ & 3^{2}+1^{2} \text { seen } \\ & \sin A=\frac{3}{\sqrt{10} \sqrt{13}} \end{aligned}$	1 1 1 1		Accept $4+9$ Accept 0.832 or $\frac{3}{3.6}$ or better Substitution in the Sine Rule must be seen or implied Accept $\sin 56.3^{\circ} \times \frac{1}{\sqrt{10}}$ or $\frac{0.832}{\sqrt{10}}=0.263=\frac{3}{\sqrt{130}}$
2	$\frac{1}{\sqrt{10}}$ oe isw	3	B1 $[A B]=\sqrt{5}$ soi B1 $[A C]=\sqrt{2}$ soi B1 $\frac{1}{\text { their } A B \times \text { their } A C}$	Accept 0.31 to 0.325 . Accept $\frac{1}{3.16}$ Allow $\sqrt{5}=2.2$ and $\sqrt{2}=1.4$ Incorrect answers must be accurate to 2 decimal places Communication: Pythagoras and Sine Rule (even if arithmetical errors)
3	$\begin{aligned} & A B=\sqrt{x^{2}+2^{2}} \\ & \text { or } A B=\sqrt{x^{2}+4} \\ & A C=\sqrt{x^{2}+1^{[2]}} \end{aligned}$ $\begin{aligned} & \sin A=\frac{\sin B}{b}=\frac{\frac{x}{\sqrt{x^{2}+4}}}{\sqrt{x^{2}+1}} \\ & \text { or } \frac{x}{\sqrt{x^{2}+4}} \frac{1}{\sqrt{x^{2}+1}} \end{aligned}$	3	M1 M1 M1 dependent	Assume $A B=$ if clear from the diagram. Accept $A B^{2}=x^{2}+4$ Assume $A C=$ if clear from the diagram. Accept $A C^{2}=x^{2}+1$ Sine Rule must be seen or implied OR accept $\frac{x}{\sqrt{x^{2}+4} \sqrt{x^{2}+1}}$ if square roots used Question 1 and 2.

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - May/June 2012	0607	06

4 (a)		2	G1 increasing from $(0,0)$ to any single max lying on the left half of the grid G1 decreasing \& concave upwards after max. Not touching axis.	Allow 2 mm distance to the origin along either axis
(b) (c)	1.4 to $1.42[\mathrm{~m}]$ between 19° and 19.5°		$\mathbf{M} \mathbf{1}[\sin \mathrm{A}=]$ $0.33 \text { or better }$	SC1 if 0.33 seen in part (a) or (b).
5 (a) (b) (i) (ii)	$\frac{[\sin B A C=]}{\sqrt{\left(x^{2}+1\right)\left(x^{2}+(h+1)^{2}\right)}}$ [increases by] 10.5° to 11° [increases by] $0.3[\mathrm{~m}$]	2	B1 correct numerator B1 correct denominator B1 for each SC1 30° and 1.7 to 1.75	Denominator must have the correct form. Communication: Pythagoras \& Sine Rule ft if one of the following in part (a) $\frac{x}{\sqrt{\left(x^{2}+1\right)\left(x^{2}+(h+1)^{2}\right)}}$ 5° and 0.3 SC1 14.5° and 1.73 $\frac{x h}{\sqrt{\left(x^{2}+1\right)\left(x^{2}+h^{2}\right)}}$ no change and 1.73 SC1 19.5° and 3.5 $\frac{x h}{\sqrt{\left(x^{2}+1\right)\left(x^{2}+h^{2}+1\right)}}$ 18.7° and 0.08 or 0.09 SC1 38.1° and 1.5
	Communication	1		Seen in question $\mathbf{2}$ or $\mathbf{5 (a)}$
[Total: 20]				

